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A Random Covering Interpretation for the 
Phase Transition of the Random Energy Model 
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The random energy model is related to a random covering of the real line. The 
phase transition is interpreted as the passage from a regime where a family of 
random intervals covers the line (high temperature) to a noncovering regime 
(low temperature). 

KEY WORDS:  Random energy model; random covering; Poisson point 
process. 

The random energy model (REM) is introduced by Derrida (3'4) as a simple 
and solvable statistical model sharing some of the properties expected in 
spin glasses. The REM describes a system whose energy levels Ei are 
idependent and identically distributed random variables (with a Gaussian 
distribution in the original formulation) and the partition function is 
expressed as a statistical sum over 2 N levels, 

2 N 

z(/~)= E exp(-pE,) 
i = l  

Recently, Ruelle (11) reformulated the REM in terms of Poisson distribu- 
tions. He rigorously showed that if the random variables Ei have a Poisson 
distribution on the real line with density ~ o ( x ) = p e x p ( p x ) ,  one can 
parametrize the probability structure of the model through the unique 
positive parameter given by ~=p/[3 .  In a recent work, Galves et al. (6) 

found, among other things, a scaling allowing one to prove that the 
Boltzmann factors l i= exp(-/~Ei) in the N ~  ~ limit are realizations of a 
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Poisson point process and interpreted the parameter p as the inverse 
critical temperature/~c. 

In this note, the Boltzmann factors contributing to the statistical sum, 
are considered as the lengths of random intervals on R. These random 
intervals are placed on the real line following a poisson process. The 
distribution of their lengths is governed by a positive measure over R + 
having a density ~0(y) w.r.t, the Lebesgue measure given by q)(y) = 7c~/y 1 + ~ 
( 0 < 7 ~  1), and the distribution of their positions is governed by the 
Lebesgue measure. 

It is shown in the following that, for e > 1, the real line is almost surely 
covered by the random intervals and the Hausdorff dimension of the set of 
uncovered points is zero. In contrast, for e ~< 1 the set of uncovered points 
has Hausdorff dimension one. This provides a clear geometrical picture for 
the phase transition of the REM: in fact, it establishes that 1 is a critical 
value for the parameter e governing the distribution of the random lengths. 
Now, as e is given by p/~,  the previous result is in agreement with the 
results of ref. 6, where p is identified with the critical inverse temperature. 

In the following, the REM will be associated with a Poisson point 
process defined on the upper half-plane R x R +. 

Remark first that the Boltzmann factors l i = e x p ( - B E i )  are 
nonnegative; it is therefore natural to associate them with random variables 
distributed according to a measure supported by R § As such, in 
accordance with ref. 11, choose the measure given by 

# ( l e d y ) = 7 ~ y - ( ~ + l ) d y ,  0<7~<1 

Now, the li, being nonnegative, can be interpreted as the lengths of random 
intervals. However, intervals are defined not only by their lengths, but by 
their origins (or their centers) as well. To get a clear geometrical insight of 
the phase transition, consider an infinite sequence of random variables xi 
that will be interpreted as the origins of the intervals. Moreover, the choice 
of the probability measure of xi is not relevant; what is merely required is 
to be a Radon measure on R. The simplest measure available is the 
Lebesgue measure 2 over (R, ~(R)).  Hence, the REM that will be used in 
the sequel is given by the following. 

D e f i n i t i o n  1. Let 2 be the Lebesgue measure on (R, ~ (R) )  and # 
a measure on (R +, B(R + )) given by #( l  ~ dy)  = 7c~y-(1 + ~) dy, with 0 < 7 ~< 1 
and ~ s R  +. Denote by v the measure 2 |  on ( R x R  +, N ( R x R + ) ) .  The 
random energy model is the Poisson point process (x~, l~)g~ N on R x R + of 
intensity v = 2 | #. 

One can now consider the open random intervals ]xi, xg+ l~[ where 
the origins and lengths (xi ,  li) are obtained by means of the Poisson point 
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process of the REM. We call these intervals covering intervals and if C 
denotes their union, one can ask whether C = R or C r R almost surely. 

The problem of the a.s. covering of the line by random intervals 
associated a Poisson point process was first posed and studied by 
Mandelbrot. (I~ For locally bounded measures on R +, Shepp ~z~ gives a 
necessary and sufficient condition for a.s. covering. For the measure #, this 
condition will be recovered at high temperature. 

In the physics literature, the covering of the real line by Poisson 
distributed intervals is studied in the one-dimensional percolation models 
by Aizenman and Newman. ~ 

Recently, Kahane ~7/ studied the covering problem in relation to the 
decomposition of positive measures on R into regular and singular parts. 
Here, this decomposition will be related to the low (resp. high) temperature 
behavior of the REM. This situation arises when a positive martingale 
given as product of independent weight functions acts on a positive Radon 
measure. One can define such a weight function of mean one for every 
point x e R as follows. 

Suppose that the random variables li are distributed according to the 
regularized measure 

(~ E~. o~Iz)( 1 ~ dx) = 7 ~  ~. ~) (x)x- (1  + ~) dx 

The union of the covering intervals C, = U ] &, x~ + lg[ is then indexed by 
e and the weight function is given by 

G~(x) = { G(x) /P(x  q~ C~) 

It is easy to see that the above functions define a positive martingale of 
mean one. For  a positive Radon measure ~ on R, one can consider the 
process G,(x) z(dx) indexed by e and let G = l i m ~  o G,r, which exists by 
standard martingale convergence arguments. In the case where G = 0 a.s. 
(i.e., G is degenerate), the measure r is called G~-singular. An interesting 
situation arises when EGz = ~ (i.e., the martingale is uniform integrable); in 
that case, the operator mapping r ~ EGr is a projection on the space of 
positive Radon measures of R. We then say that the operator G is fully 
acting on -c (or that it is G~-regular). This can be summarized in the 
following theorem. 

Theorem 1.(8) Given the process G~ and a positive Radon measure 
r on (R, 9~(R)), there is a unique decomposition of G, into a sum of two 
positive martingales 

G~=G~+G~ 
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such that the corresponding operators G r = l i m ~ o  G ~ and G s = hm~' ~ 0 G~" 
are respectively fully acting and degenerate on z. 

The above setting is a particular simple application of general 
formalism used for the study of multiplicative chaos. (2'8) The full action 
(resp., degeneracy) of the operator G~, as a function of the parameter c~, 
corresponds to the noncovering (resp., complete covering) of the line by 
C = lim~ ~ o C~. 

One can now separate the intervals li into short (resp., large) ones in 
accordance with the manner in which the energies Ei take positive (resp., 
negative) values. This separation will be relevant only in the low- 
temperature region ( a<  1), where the real tine is not covered by short 
intervals. Using this remark, we write for A < oe the measure # as the sum 
~L "4- ~H,  wi th  

#L(dy) = f i  [o,A)'(Y) y-(l+ ~) dy 

I~H(dy) = fi  [A, ~)(Y) Y -(1 + c~) dy 

L H Correspondingly, the process G~ is split into G ~ + G ~, where the variables 
l~ are distributed according to the regularized measures ~E~,oo)/~ L and 

E~,oo)Pu. The set C~ is also split into C~ w C L. Similarly, we define the 
uncovered set U L= l im~o(RkCL).  We have the following result. 

P r o p o s i t i o n  1. With probability one, the Hausdorff dimension d~ 
of the uncovered set U L is 

d H = --y for a =  1 

for c~<l 

Proof. Using Corollary 3 of ref. 5, we have for the Hausdorff dimen- 
sion d~ of the uncovered set 

d n = 0 v s u p  6 : v l - a e x p  i~L(y,o~]dy ~ 0 a s v ~ 0  

The proposition follows immediately by substituting the explicit form 
of the measure /~L into the above formula. | 

The interpretation of phase transition as a random covering problem is 
summarized in the following theorem. 

T h e o r e m  2. Almost surely: 

(i) For c~>l, l im~_,oC~=R and the Lebesgue measure on R is 
G ~-singular. 
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(ii) For :r l im~_~oC~r and the Lebesgue measure is G L 

regular. 

An intermediate technical result is given in the following lemma. 

Lemma 1. For c~ ~< 1, S~ G L(X) dx ~ L2(f2). 

Proof. We have 

E GL(x) dx = dx dYp(x6CL)p(y6CL)  

Using translation invariance and the definition of the Poisson point 
process, we find for the right-hand side 

p2(oec~)  d x ( 1 - x ) P (  OeCL" ~,xeC~) 

~<2 exp 1E~,~)(y)#L([y,A])dy 
V 8  

Using now the explicit expression for /~L([Y, A]), it is easy to see that the 
above quantity is finite for ~ ~< 1. | 

Proof of Theorem 2. (i) For u > 1 one has 

IO dx ~ r~,~L(Y,  0O) = oO 
v x  

Therefore, the theorem of ref. 12 can be used to show that l i m ~  0 C~ = R 
with probability one. Consequently, the martingale (G ~) ( [0 ,  1 ]) fails to 
be square integrable and the singularity of the Lebesgue measure for c~ > 1 
follows immediately. 

(ii) From the previous lemma and Doob's inequality for square- 
integrable martingales, the G~-regularity of the Lebesgue measure 
follows. | 

Now, if we consider the process G H ~, we have the following result. 

P r o p o s i t i o n  2. For every e, lim~_.o C~ = R almost surely. 

The phase transition of the REM is related to the random covering if 
one considers only short random intervals. The use of a cutoff in the 
lengths of the covering intervals can be understood as a kind of stability 
condition, since it corresponds to a bound from below the random energy 
levels. In the absence of any cutoff, some energy levels can be arbitrarily 
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negative. Hence,  the system freezes into these configurat ions.  This r emark  
explains  why the mode l  does not  exhibit  a phase  t rans i t ion  (in the sense 
defined in the previous  section) in this case. At  the cri t ical  po in t  (~ = 1), 
and  only there, the Hausdor f f  d imens ion  of the set of uncovered  points  
depends  on the p a r a m e t e r  7. The use of this pa r ame te r  can be cons idered  
as a g lobal  fine tuning of the mean  length of the covering intervals.  I t  is 
then na tu ra l  that  the p a r a m e t e r  7 is re levant  only  at the cri t ical  point.  

The  previous  setting can be appl ied  for the s tudy of o ther  r a n d o m  
models ,  such as the general ized r a n d o m  energy mode l  ( G R E M ) ,  percola-  
t ion problems,  etc. (9) 
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